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Analytical properties of the quadratic density response and quadratic dynamical
structure functions: Conservation sum rules and frequency moments
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The quadratic density response function and the quadratic dynamical structure futietidfourier trans-
form of the equilibrium three-point density correlatipreontain important information about a many body
system; they are also ingredients for an improved dynamical mean field theory for strongly coupled Fermi
systems. We examine the analytic properties of the density response function and establish new single fre-
guency and double frequency moment sum rules. We relate the sum rule coefficients to the high frequency
expansion of the response function. Next we invoke the quadratic fluctuation-dissipation theorem to relate
these frequency moments to weighted frequency moments of the dynamical structure function. These latter
reduce to straight frequency moments in the high temperature classical and zero temperature degenerate limits.
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PACS numbgs): 05.30—d, 71.10-w, 71.45.Gm, 77.22.Ch

. INTRODUCTION ear case, frequency moment sum rules g, ,»;;0y,w,)
entail frequency moment sum rules for the quadratic dynami-

Sum rules for the linear response functions have playedal structure function. There are, however, deep structural
an important role throughout the development of electrondifferences between the linear and the quadratic fluctuation-
liquid theory. The knowledge of the compressibility sum rule dissipation theorems which prevent the analogy to be carried
and thew® moment of the density-density response functiontoo far.
x(0,w) has led to much improved local field corrections. In analogy to the linear time-dependent two point function
Less explored_are po_ssible_ sum rule_s re_Igting to quadr_atis(q,t):(1/N)(gq(t)g_q(0)>(°) the equilibrium dynamical
response functions. With a little reflection it is easy to realizethree point function is defined as
that the fundamental physical effects that operate in the gen-
eration of the linear sum rules—namely, symmetry and con- L
servation laws—must also be responsible for creating sum
rules for quadratic response functFi)ons. Some of thesge sum SXdo.to;1.t1:02,t2) = N<Q%(t0)qu(tl)QQz(tZ»(O)'
rules for the quadratic density-density response function (2
x(01,w1;9,,w,) have already been identified: Golden, Kal-
man, and Datt@l] have shown the existence of a static com-
pressibility sum rule and established the high frequency beWhile in the classical limit the density operators commute,
havior of x(d;, w1 0., ®,); more recently Tao and Kalman their ordering is of obvious relevance in the quantum case.
[2] have derived a frequency moment sum ru|e, ana|ogous t6h|s is reflected in the chosen Ordel’ing of the arguments for
the linearf-sum rule. the three poinS. The superscript0) indicates that the aver-

In this paper we will systematically establish and analyze2gde is taken at equilibrium. Hence only the time differences
a number of sum rules for the quadratic density-density reDetweent;, t,, andt; matter and one can always shift the
sponse and the quadratic dynamical structure function. Théme so that one of the time arguments becomes zero. The

precise definition of the former is the relation time Fourier transform of Eq2) will be referred to as the
guadratic dynamical structure functio®(qg,wq;01,®1;
1 dw, [ dw; 0,,w,)=5(012). The six differentS(abc) fall into two
<Q—qo(_w0)>(2):quq fﬁ om cycles. Cycling the operators leads to a phase factor
142

S(bca)=e A%»aS(abc) [4]. The two different cycles can be
X x(Qq,01;0p,02)P(qq,07)P(qy, 05) related througts(abc)=S(—c—b—a) where the_ sign is of
relevance only for the frequency arguments since the qua-
dratic structure function is even in the combined wave-vector
X5<E w‘)é(E Qi)’ @ arguments. The linear analog of all these relations is the
simple S(q, ) =e#"°S(q, — w).
where the twab are external fields. For simplicity in writing As in the linear case, the quadratic density response func-
we assume throughout this paper gjlto be nonzero and tion and the quadratic structure function are connected
that alwayswy+ w;+ w,=0 as well axjp+9;+q,=0. The  through a fluctuation-dissipation relation. The quadratic
superscripi2) denotes second order in the external fields. fluctuation-dissipation theored@QFDT) was established by
x(91,w1;0,,w>,) is related to the quadratic dynamical Golden, Kalman, and Silevitch for a classical sys{é&hand
structure function through the quadratic fluctuation-later by Kalman and Gu for a quantum systgsh But while
dissipation theorerfi3]. Thus, somewhat similarly to the lin- the linear fluctuation-dissipation theorg/DT)
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{S(q, )} ogq= S(q, @) — S(q, — 0)=9(q,w)(1—e Fv) The plan for this paper is as follows: In Sec. Il we recal-
culate the known, and derive frequency moment sum rules
for the quadratic density response. We then discuss how the
frequency moments relate to the high frequency expansion of
the response function. Section Il discusses sum rule rela-
relates the odd part of the structure function to the imaginaryijons for the quadratic dynamical structure function. Finally
part of the density response, the QFDT links twenpro- e ook at the high temperature, classical, and the zero tem-
jection in the combined frequency arguments of the quaperature limits of these sum rules. The Appendix provides

dratic structure function to theeal part of the quadratic den-  yeajis on the derivation of classical frequency moments of
sity response. The QFDT can be written in three differenty, . quadratic structure function

combinations. We will use the following forms:

_ — _ _ o PBlho
{S(210 = S(20D}ever={S(210 ~ S(20D H(1 e "72) Il. SUM RULES FOR THE QUADRATIC

4n® RESPONSE FUNCTION
== T{X (01, @1;02,w7)

— _Zﬁ n
= X'(Q0)

In this section we will analyze the.>-w,” frequency mo-

—x'(02,®3;00,w0)}, (3@  ments for the quadratic density response function beginning
with the moments of even combined power+r,. The
{S(120) — S(102} eyer={S(120) — S(102} (1 — e~ #*1) ra-, moment will be designated bY; .
2
=" T{X/(Ch'wl;%:wz)
X [ab]':f% O 020} (Ga a3l )
~X'(do, w0;01,01)}- (3b) e B e B R

4
[We define the static structure factor as the integral
Sq=f°fw(dw/2w)8(q,w). Our S(q,w) differs from the one
used in Ref.[6] by a factor 27/n. Our notation is also The notationa,b] refers to the order of integration which
slightly different from that of Ref{4] where the symbok is  will be understood as given in the square brackets and is, in
used fory. x' and x” stand for real and imaginary parts, general, relevan(i.e., Xrb,ra[b,a]aﬁxra,rb[a,b]). On the

respectively. The linear and the quadratic versiong @nd  other hand, renaming the variables-b simply amounts to

S are distinguished in this paper by the number of their archangingg,< s in the result and does not change the type
guments} While it is x’(a,b), thereal part of the quadratic of moment. Note thaty(a,b)=x(b,a), i.e., the quadratic
density response, that appears in the QFDT, it should be kegfensity response function is symmetric in its two arguments.
in mind that it is related to thenaginaryparta”(a,b) of the  Normally we will considera=1 andb=2 but some other
quadratic  polarizability  through «(1,2)=(i4m€*  combinations will be needed, too.

0od1d2) x(1,2). We note that causality requirements imply  sym rules will be obtained wheX, , can be expressed
that t.he qanratic density response function obeys' Kramer§ﬁ terms of “known” or simpler quarz;fit?es. We will follow
Kronig relations for both frequency arguments lndepen-TaO and Kalmar2] in the derivation of the first single fre-

der%trl])g usefulness of sum rules in designing, controllin ancﬂuency moment of the quadraie and then establish the
gning, 9 igher moments.

checking approximation schemes for the calculation of re-
sponse functions is well established. The frequency moments
calculated through the sum rules play another formal role:
they are the coefficients of the high frequency expansion of
the response function. Very little is known about the analytic We can start with the trivial zeroth moment. It follows
structure of the quadratic quantities, the guideline providedrom the plus-function character af( w1, w,)—causality re-
by the sum rules in this connection should be especiallfuires thaty(w;,w,) is a regular function in the uppes,
valuable. The quadratic response functions govern the reandw, half-planeq8}—and from its sufficiently fast vanish-
sponse of electron gases to finite amplitude electromagneti®g for w;—%, w,— [cf. Eq.(13) below], that
perturbations; therefore the constraints imposed by the sum - do - do
rules are expected to have a significant bearing on the de{ =™1 . _ 2 . _
scription of these processes. Somewhat less obviously, thd —» 27 X(G1,01362,2) ffoc 27 X012 02)=0.
guadratic response and structure functions are fundamentally 5)
linked to the correlational properties of interacting electrons

[7] and thus the quadratic sum rules can play a role in the

determination of thdinear response of a strongly correlated We can evaluate higher frequency moments directly by using
electron liquid. In particular, as in such calculations pertur-the Kubo procedure. The starting point is the density re-
bative approaches are to be avoided, the sum rules can Isponse function as given by the fluctuation-dissipation theo-
exploited to construct nonperturbative approximationrem in the time domain. For comparison, we quote the linear
schemes. relations as well.

A. Single frequency moments
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H( (92
x(q,t)=— 17V — ([04(0),0_4(—D]), EEX(qlvtl;qutz)

O(t)0O(ty)

x(Q1,t1;02,t2) =~ —Zlﬁzv—z{@(tz—tl) =—4(t )qgn?lx(qz,tz) S(ty— tl)ql d x(—doty)

X([[@-qy(0),0—q,(—tD)],0-q(—t2)]) 0(t)0(ty)

oy 10—ty
+0O(t1—ty)
X([[0-q)(0),0—qa( —t2)],0 g (~tD]}. X([[e-q,(0),0-q,(~tr).@,(~12)]®
© + 0t~ ([0 q,(0),0 g (—t2) 1,0, (—t) D

Here O (t), etc., are step functions ensuring the causal be- (10

havior of the response functions. Taking now the derivative
of Eq. (6) with respect ta; att;=0, we find that the right- Now lettingt, approach 0, the second term on the right and
hand side has only one nonvanishing contribution. All othetthe second term inside the curly brackets vanish and the re-
terms vanish because tidedistributions as the derivatives of maining inner commutator can be evaluated:

and the produc® (t,)0(—t,) leave us with vanishing
equal-time commutators. The result contains an additional
factor 3 which comes from the step functid(t,) taken at
t;=0.

_Zﬁz%'%E P-4y

[Q—quQ—ql]: m 4 m Cp+q2/2cp /2 -

Recalling that the  particle-current  density is

J
7 (d1,t1;02,t2)

jq2=Ep(p/m)c,;qz,ch_qz,z, the result can be written as

t,=0
O(ty) 2
=153y EX(letlﬂzytz) -
X([[@ -q)(0),[04,(0),H]].0o,(—t2)])©.
7) Qo Gs O(ty)

=" om [X(QZ'tz)é(tl) v
So far no specification of the many body Hamiltonian has

been necessary. To proceed further we assume that the sys- X{[d1-]q,(0),0_q (—t)Y© ) (11)
tem is an electron gas with a neutralizing backgroliad 2 2 t,=0

guantum OCRone component plasmja With this Hamil-

tonian now the inner, equal time double commutator can b

evaluated exactly, resulting in

Jo-Q
[0 4(0).[0 () HII=1 = 0q,
and leading to the relation
d ~Jo-q
EX(Ql,tli%atz) = am lX(sz ts).

t;=0

In the frequency domain this amounts to

J do; QO'Q1
o le(QLwl Oz, w2) = am ——x(02,05).

The delta distribution5(t;) on the right constitutes an infi-
nite constant at;=0, but when in the next subsection we
take t,=0, the term in question will vanish due to
x(0,,t,=0)=0. The second term on the right contains the
linear density-current-density response functjgp, a vec-
tor.

A Fourier transformation into the frequency domain
yields

d(,()l

(8)
fﬁmﬁle(QLwly‘Jz'ﬂ)z)

QO °[}

{CX 02, @2) —i101° Xjo(d2,@2)}, (12

whereC is the infinite constant of dimensian! resulting

This is the basic sum rule established by Tao and Kalmafrom the delta distributior5(t,).

[2].

The second derivative of E¢6) with respect td; can be
calculated directly as well. Using th& distribution’s prop-
ertiesxd(x) =0 andxd’(x) = — §(x) we find the form

The origin of this divergent term can be understood by
contemplating the exact asymptotic high frequency behavior
of x(q;,w1;q,,w>,) that is of the form[1] (x is dominated
by x' asw;—®, w,—®)
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, n 1 In the long wavelength limit the statj(aqland Xq, are subject
X' (Qr @10, 0%) = 5 00103 to the routine linear compressibility sum rule.
These latter frequency moments are of zeroth order in the
002 \2 combined power ofw; and w,. The remaining zero order
X[ —(qy- Q2)+ (qo d2) moment isX, o, @ mere integration ovey(1,2). But in view

of Eq. (5), the contour integral vanishes and so d¥gg.

a2* do, [ d
+w—2(QO'Q1)]- (13 XO"{l’Z]:f%f Zle(Q1,w1aQ2,wz) 0. (17

It is clear that for fixedw, the leading term in the integrand Turning now to the second order moments, we note that
goes asw; 2, generating a divergeni, integral in Eq.(12).  the momentX, ; is the quadratic equivalent of the well
This consideration also shows that more severe divergencésown f-sum rule[2]

would arise from higher than second order single frequency

moments. On the other hand, as it is obvious from . X 1.97— f %J’ doy _ )

there is no divergence problem for tkg moment which, for 141.2] o ) 2 ©102X(01,01502,0;

parity reasons, combines only with tbq’?’ term in Eq.(13). )

More will be said on this later. _ NG 92" 18
We can now proceed to find the double frequency mo- 2 2m 2m’

ments by either taking the derivative of Ed8) and (11)
with respect tat, att,=0 or multiplying Egs.(9) and (12)
by and then integrating oves,.

The order of integration is relevant here and this explains

why the right side is not symmetric in the indices. Renaming

the variables gives the momeX i 2,1] with changed order

of integration. The noncommutability of the, and w, inte-

gration results in aX term, which will play a role in Sec.
The double frequency moments fall into two classes, detll. More details are given in Appendix A.

pending on whethar; +r, is even or odd. For parity reasons

only x'(1,2) contributes to the former and ony(1,2) con- N d;-dz 95— 03

B. Double frequency moments

tributes to the latter. First we review the even moments. X1l 1.2 =Xy [2,1]= 6Xy 1= 2 2m  2m (19
Starting from Eq.(4) with r;=r,=—1 one finds as a
direct result of the Kramers-Kronig relation The X, moment we find from Eq(11). After setting
t,=0, the divergent term vanishes, the commutator can be
N 1,2 dwz do; evaluated and Fourier transformation into the w, domain
1-101.2= 27 w0, XAy, 01502, 07) produces theX,, moment. Alternatively, we can integrate

Eqg. (12) over w,. In this case the plus-function character of

- causes the first term in E{qL2) to vanish and one is
X(% 0:02.0)= "~ 7 Xq; .a 1a  X(@2) .2

left with
In the long wavelength limit §;—0, g,—0) the static dwz %
Xaq,.q, is subject to a quadratic compressibility sum r{é Xod 1,2]= le(ql w1;02,w))
from which follows that
:n%'ch d1-42 20
n (ap/an)t—n(d?plan?)¢ 2m 2m °

Xag,.0, " 5 3
v 2 (aplan)y Renaming the variables here gives thgd2,1] moment.

Changing the order of integration i20) createsX, J2,1]

Combining now Eq(9) and the Kramers-Kronig relations which vanishes according to E¢F). Therefore

for x(1,2) we find the frequency quotient sum rule

X = Xod 1,2 — Xp 4 2,1]=X, 4 1,2]. (21
d(,()l w1 ' ' ' !
X1,_1[1,2]=f j 27 w, 2, X(A1, 01,02, 07) By making use of Puff'so3-moment sum rul¢9] for the
linear y we can write down one of the fourth order moments
_ q;r:l)(qz (15 of x(1,2), namely,
dwz dwl

The order of integration can be changed in this case, X141.2= f f_wl‘”z X(Q1, 01302, 02)
X1-1[1,2]=X_142,1]), so that we find the momemx_, , yrro
by just interchanging the indices of the arguments in Eq. N Jo 0 Clz + 92" ficd, Ao
(15). ~272m 2m|“? " 2m| 2m kin

(22

2
X 1f12=— Go- 2 @p (k-g2)° }

8m Xay- (16) +W - k2 2 [qu—k Sl
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wherew,?=4mne’/m and(ey;,) is the expectation value of Qo Gy G

the kinetic energy per electron in the interacting system. Q,,=—2n >m_ 2m’
The other fourth order momenis, , and X3 ; contain di-

verging contributions, that can be understood in view of the

remarks made earlier; cf. E¢L3). Jo- 1 d1- 0>
Turning now to the odd moments we note that the two Q3= om  2m

momentsX, _4[1,2] andX_;  1,2] vanish:

0102 do- (3011 0y)

dw, dwl Q40=2n S S

—x(01,01;02,0,)=0
(23

Xoal12= [ G2 G
The resulting expression E(R5) shows that the integral

generating the»} moment(to which the(}, , term, for parity
reasons, does not contribuxists, while that generating the

w% moment is divergent, in accordance with E¢8) and

because of Eq(5) and

X_1d1,2]= J EJ 77 —x(01,01;02,w>) The high frequency expansion E(.3) and its offspring
Eq. (25 are based on the asymptotic behavior of
dw; x(d1,1;0,,w5) in the hydrodynamic limit. A more general
=i EJ 5 X(01,0:02,02) =0 (24 ‘approach can be generated, again in some analogy with the
linear case, through an expansion in terms of the frequency
momentsX; . . This is made possible by exploiting that

for similar reasons.

The first order moments, botk; o and Xq ;, again trivi-
ally vanish because of the plus-function behavior of o
X(w1,0;) and x(w5). ) _ do,

The situation is different for the two third order moments ~ X(d1:@1:02,02)=—P | —

X1 2andX,,: both lead to divergent integrals, as is obvious o - -
from Egs.(9) and (12). XPJ do; x(d1,01;02,07)

All the moments listed, with the exception & 4 1,2], 7T (w1~ w1)(wy— ;)
are coupling independent and thus are exhausted both by (26)
x0(1,2), the quadratic response function of the noninteract-
ing gas and byygrpa(1,2), the response calculated in the
random phase approximation: Letting w;—>andw,— (in this ordey, the high frequency

expansion of the real part can be evaluated by the steps in-
dicated below:

X(ql,wl,qz,wz) is its own double Hilbert transform:

Xo(d1,01;02,03)
€o0(do,wo) €0(d1, 1) €9(Qz, w3)

XrpaA(Q1,01;02,07) =
d(1)2 d(l)_l
X' (01,01;0,w)=—P - —P| —

aa
where €¢(g,w) is the Lindhard dielectric function. The as- o
sertion concerning,(1,2) can be verified by direct calcula- v X'(Ch w1;02,03)
tiOI’l. ( (1)]_)((,02 (1)2)
In summary, there are five nontrivial sum rules for

X_11, X1-1, X1.1, X20, andXy 3, all of them pertaining to J dw, d“’1 X' (01,1302, @2)
the real party’(gi,w1;02,w,). This is in contrast to the w1(wr—w5)
linear situation where one deals with the frequency moments 5
of the imaginary park” (g, »). While x"(q,w) vanishes very |1+ _+ “’1 4.
fast for highw values and thus the construction of the linear w; \w
frequency moments is never problematic, the high frequency — — —

A , . . . 1 dwl w1 w1
behavior of y'(q;,w1;0,,w5) is governed by the inverse = 1+_+<_ 4.
power of w; and w, and its leading terms are given by the wi) w1 @
exact high frequency expansion, E43). X x"(Qy, @710, @) 27)

In order to infer the limitations on the existence of the
frequency moments ofy(q;,w;;q,,w,) one has to let
w,— o for fixed w, in Eq. (13): The resultingw," moments ofy”(1,2) forn=0,1,2 can be

evaluated with the aid of Eq$5), (9), and (12), and their
high frequency expansion can be calculated from the known

22 | 31 Qg asymptotic behavior of the linear response function. For
X' (A, 01—=% 0, wp) =+ —5 5+ —5—+—7, L e
wiw; 0w, o] these lower order moments it is also permissible to expand

(25 both Kramers-Kronig denominators which then provides
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(015G 00) = — f %f % X' (A1, ©1;0,,03) Ill. SUM RULES FOR THE QUADRATIC S
™ ™ w107 The knowledge of the; , moments allows one to gen-
1 oy erate similar frequency moments for the quadratic dynamical
X1+ —+---||1+—+"-- structure functiors. Since the ordering of the density opera-
@1 ®2 tors within theS functions is important, one has to adhere to
{ X1  Xoo  Xoo a convention as to the chosen ordering for the definition of
=4 =5 +—F—+—75 the moments. We choose the moments ${f01) and
W1wz W10z @010 $(102) in the following; moments for other orderings or of
Xi3  Xoo ] symmetrized combinations can, however, be generated by a
+ "+ =5+ (28) similar procedure. Let us defirg . as
W10, W0 172

The momentsX, ;, X0, and Xy, as given in Eqs(18), Z ;=f der ﬂwrllwrzz
(20), etc. are indeed in agreement with the corresponding 1z 0 27 ) o 270

Qnn coefficients in Eq.(25). As to then=3 moments of
x"(1,2), no general result is available; nevertheless the

n=3 mpmgnt for the noninteractingo(l,IZ) can be calcu- The exponential in the integrand stems from the inclusion of
lated, yielding the corred, , coefficient in Eq.(25). both S cycles; cf. Eq.(3a. Its sign is determined by the

One.can Con'femplate the more gen/eral hig.h freq'”"anc)fombinedJa_arity of the frequencies. The other moment we
expansion of y'(1,2) expressed asy'(Qi,wq;02,w>5) will use is Z defined as
rq.,ry?

=2 mnm+n=4evenm=2)2mn/ 0705 . As it is clear from the
foregoing the expansion fan+n=4 is unaffected by cor-
relations and therefore would be exhausted bothyffi,2) > . fm % - ﬂwrlwfz

and xgrpa(1,2). Correctional contributions are to show up in ) 2w 2w 2

054, Q33, andQ, ,. The first two can be derived from Egs. e

(23)4 and3’(312); the gilculation of), , hinges upon the eval?;- X[1-(~1)7+7r2e”Ph]S(102)
ation of thew3 moment ofy’(1,2). (Details of the expansion fw dw, (* dw;

X[1—(—1)"1* e Ahe2]5(201).  (30)

will be discussed elsewheye. =
Moments of the(frequency and wave-numbeshifted

x(0o,wo;01,w1) and x(do,wq;02,w,) are also of interest X[1—(—1)"1tr2etFho1]5(201). (31)

and will be, in fact, needed in the next section. To transform

such moments into the fori@) we can substitute, shift, and

rename the integration variables. The procedure is illustrate

below for the case,=r,=1:

flwfz
2T 2w 172

To find suchZ andZ moments we multiply the QFDT,
Eqs. (3a) and (3b), respectively, byw!'w;? and integrate
over both frequencies. Under the integral the two different
S cycles can be combined by flipping the signs ofallfor

dw2 da)l . . h
Z_J 2—0)1602)(’((11,0’13%,600) one S. For evenr +r, Z,l,r2 then is given in terms oK
m T moments as
_ dwl dw2 , . _ 2ﬁ2 r o de * d(,()o
= | 2. | 57 @192X (G1,01500,00) + 6X14 Zepr,= | Kl B2 =D o] 5
dw; [ dwg , X (wo+ 02) tw2x (o, o 02, @>) ¢ - (32
= ox ﬁwl(_wo_wl)X (d1,@1;00,w0) 0T 2 00 M2 2
+6X11 ForZ_,l,r2 we find accordingly

o 0)2

2h? ) d
T Xrl,rz[lyz]_(_l) 2f E

2 2
ng;-g di—d2 -
==X L0 =X 0045 5= — . Zo =

(29

The change of the order of integration in the second step is -

necessary in order to facilitate the substitution from the set

(wqw5) 1o the set fyw): in the original order the replace- where special care has to be taken with the double integral.
ment of w, by wy=—(w,+ w,) after the integration over See Appendix A for more discussion.

w1 would not be allowedsX, ; is taken from Eq(19). That Now we can immediately write down th&; ; moment
this can be done is not quite obvious, sincg18) the inte-  usingX; ; and the fact thaX, , vanishes. Note that due to the
gration variables ar@; and w,, while in (29 w; and w,. symmetry of Eq.(18) in the indices 0 and 1 the moments
The justification is detailed in Appendix A. X141,2] and X, 4 0,2] are identical.

* dwl r r ,
X oa @2 2x' (o, wp:01,w1) {, (33)
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2h°
Zl,l:T{Xl,l[ 1,2]+X4,40,2]}

—2ﬁ2q0 A1 Q2

2m 2m’ (34

The 2-0 moment is given in terms of, o and X ;.

242
Zz,o=T{Xz,o[1,2]—Xz,o[0,2]—2X1,1[0,2]—Xo,z[0,2]}

_4ﬁZCIo d1 91-Q2

2m  2m (39

The momen¥, , is composed of twa, , moments and thus
vanishes. More generally it can be seen from G&gand the
QFDT, Eq.(3a), that allZ moments withr;=0 vanish.

The corresponding; ; moment is found according to Eq.
(29):

_ %2
Zl,lzT{Xl,][laZ]+X1,J[0:1]+X0,2[011]_5)(1,]}
(36)
which reduces to
Z_l,l th% az Q1 37

2m 2m’
In calculatingZ, , andZ, o we encounter integrals similar to

(29 but creating adX,, an 6X, o, respectively, when the
order of integration is changed:

—  24? dw, dwl
Zor | Xod12- [ S2[ 52

Xw%X’(lewMQvao)]

2
—wg— 1)

2h2 fdwl dwg
“on|J) 27) 27

X x'(91,w1;00,w0) + 5X0,2]

242
= - T[ szc{o,l]+2X1Y1[0,l:|+)(0'2[0,1]
_ QO 02 0102 5Y0-02 01- 02
2m 2m 2m  2m (38

and

— 22
Zy0= T{Xz,({ 1,2]- Xo’2[0,1] - 5X2,0} =0. (39

Observe thatZ—rl,,Z(ql,qz)=Z,2,,1(q2,q1), which shows
that the w; and w, integrations commute as far as tie

X moments has to be sought in tHemoments’ expected
much faster vanishing fow;—, w,—, and rendering
the w;-w, integrals unconditionally convergefif. Appen-

dix A for details.

To find the oddZ; , moment we divide the QFDT, Eq.
(3a), by (1—e P"«2) pefore integrating ovemw,. At this
point we can employ the single frequency moment .
and the linear FDT to find the additional relationship

* dwl _ h
f_wﬁwl{azol)—S@lO)}— - A1S(d2,02).
(40

An equivalent expression which has the indices 0 and 2 ex-
changed can be derived in the same manner.

If we now integrate Eq40) over w,, we are again able to
combine the two differen§ cycles by flipping the signs of
all w; for oneS. The result relates the frequency integral of
the dynamical quadratic structure function to the static linear
structure functiors,:

(41)

The above procedure is not applicable to the QFDT, Eq.
(3b), with our chosen order of integration. Nevertheless, ex-
ploiting that the order of integration is not relevant we can

write down the corresponding, ; moment:
(42)

If we first multiply Eq. (40) by w, and then integrate the
f-sum rule for the linear dynamical structure function can be
used to find the&Z; ; moment, Eq(34), again.

The definition of the static quadratic structure functi@h

) * d(l)2 dw 1
sql,qz.zfiw — Lc ~ 5{S(012 +5(120 + S(201)}

could be viewed as another frequency moment if the differ-
ent cycles ofS are combined:

— =(1+etPhory = Fheozyg201) =S

W27 ) 21 3 142

(43)

fw dw2 dwl

The momentg34), (35), (37), (38), and (41) constitute
sum rules for the quadratic dynamic quantum structure func-
tion. One should keep in mind that the exponential in the
integrand is a consequence of the fact that the density opera-
tors do not commute for a quantum system. It is also inter-
esting to note that the first order moment is at l€2&t) and
correlation-dependent while the second order moments are

moments are concerned. This is true, even though the ind®(%2) and correlation-independent. The sum rules derived

vidual X moments which combine into a particuldarmo-

in this section can provide guidance in the construction of an

ment are obviously sensitive to the order of integration. Theapproximation for a dynamical density response function.

reason for the difference between the behavior ofZhend

This will be discussed elsewhere.
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A. Classical limits For the calculation of the\,  we refer to Appendix B.

The high temperature, classical limitg%—0) of thez  Note thatA, ,(d1,02) = — A, m(d2,01)-
moments can be calculated directly and lead to pure fre- Before taking the classical limit of the variodsmoments
quency moments 0B;,s5id 012), we observe that upon taking the classical limit of expression
(40), the twoS;,5sic terms on the left-hand side cancel and
to order# only the two8S of different orderings contribute.
The integration ovew; reduces the quadratig’ to linear
x" by virtue of Eq.(9) and reproduces the classical linear
Some of these have been derived eafligr The method FDT.
is recapitulated and extended to higher moments in Appen- Since Sjassic IS also an even function in its combined
dix C. Here we show how thg# — 0 limit can be obtained -, arguments, all moments with odd combined powers
directly from the results above. It is obvious that the classicain @; and w, vanish due to parity1]. Starting with the
M moments satistM, . (d;,02) =M., (dz,01). A com-  classical limit ofZ; ; Eq. (41), to O(#% and O(%?) the
parison with the direct classical calculation is given in Ap-esulting equations yield vanishing odd, o and M, ; mo-

M rl,rz: = choﬁ 7wﬁwrllwr228classic(012)-

pendix C.
First we need to expan8(201) in%. An expression for
Sin terms ofx’(q;,w;;0,,w,) has been derived if8]:

442 o
S(20D) =~ 5 {(1—e o[y’ (12— x"(20)]
—(1-e"Pen)[}'(12-x'(0D]}. (443

D stands for

D= —2[sinh B wg) + sinh( Bhwq) + sin( Bhw,)]

=—13Bwow w,+ O(%°). (44b)
In the limit 2—0 S can be expanded as

S(201)=S(012)|;_o+%6S(201) + O(%2).  (45)

Then, to lowest order ik, one finds from Eq(449

8(012)|ﬁ=OESclassic(012)
4 [x'(12) x'(200 x'(01)
=—— + + .

NB°| wiw;  wrwo  wWow;

(46)

This is the known classical QFDT expressid®)]. The first
guantum correction, linear if, is found to be

w1x'(20)  wpx'(01) N (wl—wz)x’(lZ)}

2
5S(201) = — v

NG| wywg w10

(47
Here xy' is understood to stand foy’ (£ =0). In contrast to

Sclassid 012) the ordering of the arguments #%(201) is of
relevance and specifically we hawisS(201)=— §S(102).

The quantum correction tp’ can be ignored for it is at least
of order#2. This can be inferred from the observation that
the occurrence of is linked to the frequencies and/or wave
vectors and that'(a,b) is an even function in the combined
frequency and the combined wave-vector arguments. Be-

cause variouse;-w, moments ofsS contribute to the clas-
sical limits we will define

* dwl

A -=fw% O 10255(200).  (48)
F1.f2’ w27 ) 2w 172 '

ments. The equation linear i yields

Jo-9
M= 5 A= —’OBml Sq,

which using(B1) gives the known classical frequency mo-
ment

_01-02

M= gm

S, (49)

o’
It is the terms stemming fromS that restore the 1-2 sym-

metry in the classical expression. The vanishifig, pro-
vides to orderi an equation foMg ,

M —2A
02~ g0
which using(68) becomes
Jo- 42 d1-02
Moo= — am So,~ m Sqo: (50)

Turning now to the classical limits &, ; andZ, 4, Eqs.(34)
and(35), to order? they lead to théV 13andM, , moments
of S;jassic in terms of A moments:

2 Jo' 1 95
Ml,S_EAl,Z_ Bm Bm’ (52)
2 Oo-d1 01-Q>
MZ’Z_EAZ’l_Z,B—m Bm (52

The momentZ, , provides the relatioMg , =(2/8)Aq 3.

By taking thes— 0 limit of Z, ; andZ, , we find to order
%12 the momentdM 5, and againM .5,

2 Go' 2 7
M3,1—_EA2,1_ Bm Bm’ (53
2 0o-d2 01-Q>
M2’2— - EA]"Z_ Z—Bm IBm . (54)

Furthermore the momenZ,, provides the relationM,g

=—(2IB)A3,. The comparison with direct classical calcu-
lations is given in Appendix C. Note that the symmetry of
Sclassid 012) in all three arguments implies the relationships
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M2 (do.d1) =Mz (do.d2) — » dw; (= doy
Zsy )= f 5| 5o @i e{S(02D]4s+ S(120) 12
=Mz (d1,02) +2M11(01,92) + Mo 2(d1,02) w7 7°°
(55) —S(201) |56~ S(102)2 3} (59
and The|; indicates that the integration is to be carried out in that
domain only. The numbering of domains starts with the first
M4 o(Go.01) =M o(0o.02) guadrant and proceeds clockwicd. Ref.[3]).
=My o(d1,02) + Mg 4(d1,02) +4M31(d1,02) V. CONCLUSIONS
TAMy15(01,02) T6M2 A0y, ). (56 In this paper we have studied the analytic properties of the
longitudinal quadratic response function and the related qua-
B. Zero temperature limit dratic dynamical structure function for Fermi systems at ar-

bitrary temperatures. Although the basic relations are inde-
pendent of the details of the interaction we have focused an
the electron liquida quantum OCP For the response func-

. i . : . _tion we have systematically established single frequency mo-
if @,>0 or w,<0. This comes as no surprise, since in ment and double frequency moment sum rules, which bear

S(201) we have a creation operatof (w,) acting on the some resemblance to the linebssum rule. The analytic

ground state from the right and an annihilation operator . . )
c(w,) acting on the ground state from the left. A similar properties of the response function make the frequency mo

argument holds for all the six differe functions atT —0 ments sensitive to the order of integration. We have shown

S : that the coefficients of the high frequency expansion of the
and_ makes each of them vgnls_h n "?1" bu_t two_adjacent doFeal part of the response function can be expressed in terms
mains of thew,-w, plane which is divided into six domains

by the t d the ling. — Int : fh of its own frequency moments. This is in marked contrast to
y the two axes and the ling, = w. 'n turn, in any orthese ., happens in the linear case where the similar expansion

SIX dO”_‘a'”S only two of thes f”f_‘C“O”S are not vanishing jinus the real part to the moments of the imaginary part. For
[3]. This can he compared with the linear case, Wher‘%he guadratic dynamical structure function we have defined
(g, w) vanishes forw<_0 atT=0. In Eq.(38 now one can weighted frequency moments and have used the quadratic
conqentrate on domamg where only one of Siéunctions fluctuation-dissipation theorem to relate them to the fre-
survives. For example, in the quadran{<0, w,>0, where 4,000y moments of the density response function. In the
S(201) does not vanish, we can distinguish two cases anfligh temperature classical limit these weighted moments re-
find that Eq.(3a) reduces to the much simpler expressionsy ce g straight frequency moments that agree with the mo-

The sum rules given in previous sections all hold for ar-
bitrary temperature. Now taking the limlt—0 we can see
immediately from the relatiod3) that S(201) must vanish

for S(201): ments obtained by the straightforward extension of the Kubo
472 procedure to the three point correlations.
0<w,<—w1:5(20) = —{x'(12)— x'(20)}, It is not within the scope of this paper to exploit possible
n applications of the newly established sum rules. In view of

(573 the increasing interest in the use of nonlinear response func-
tions and multipoint correlations in the description of many
) _ , , body systems there is little doubt that these sum rules, simi-
0<—w1<w;:5(20) = T{X (12)=x'(0D)}. larly to their linear counterparts, will turn out to be effective
(57b) theoretical tools. Thus some indication of the possible direc-
tions these applications may take seems to be useful.

The simplified relationships do not allow one, however, to We have already alluded to the intimate relationship be-
obtain simpler sum rule expressions. This is due to the dofween linear and quadratic response functions. It is via the
main restrictions i(57a and(57b). The integration over the quadratic fluctuation-dissipation theorem that one can show
unrestrictedw;-w, plane which generates the sum rule ex-that quadratic respong@)®, correlational linear response
pressions sweeps over all six domains and picks up contrie@)™, and equilibrium three point correlatiofpe 0 0)®
butions by various combinations of tisfunctions. Thus the determine each othef4]. A recently established non-
formal definitions of the moments Eq&80) and(31) remain  Perturbative schemgl1] exploits this by showing that a

unaffected, although it is more convenient to eliminate theSimple-minded approximation for the quadratic response
exponential factor in th@=0 limit and rewrite the defini- leads to a rather sophisticated improvement in the calculation

of the linear response of a classical OCP.

The use of the static quadratic response in the description
of liquid and solid metalgin the effective one component
approximation has been well established at least since the
seminal paper by Lloyd and Sh¢ll2]. It has, however, been
pointed out recently by Ashcroft and collaboratpi§] that

—S(201)|56—S(102) |5 3 (58)  the interactions induced by fluctuations require the descrip-
tion in terms of the dynamical quadratic response function.
and In a slightly different context, in the calculation of the

2

tions szfl»fz anerlyr2 as

«© de * dwl r r
Zi = f_mﬁf_xﬁw11w22{8(012)|3’4+8(210”1'6
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energy loss of a charged particle moving through a metal the )

contribution to thez3-dependent portion of the energy loss Xo(1,2)= 2 E {(wy+io+ay)”

(the so-called Barkas correction, discriminating, e.g., be-

tween the energy loss of a proton and that of an antipjoton X[(w1+ wy+io+b) = (w;+wy+io+cy) ]
comes from quadratic respon@hbe linear response provides _ . _ .

only a charge-symmetric teprfil4]. It is well-known that the +(wp+io+ay) [(w;+wy+io+b)

I!near contrlbutlon_ to the stopping power is controlled by the (01 + wytio+cy) 1. (A1)
linear f-sum rule: in analogy, a quadratic frequency moment

sum rule is expected to provide an important constraint fo Here 00", (1/2m)(sq, qu 0), b= (1/2m)(sq

the first nonlinear contribution.
Another increasingly important use for nonlinear sum—29-P), and ¢,= (1/2m)(sq| _ST 2q-p) with 1=1if
rules originates from the growing popularity of numerical|=2 and =2 if |=1. Again q;+q,=q. The sum over
simulations of correlated many body systefi§]. The sum s==*1 is just a means of abbreviating the expression.
rules provide one of the few exact monitoring controls for Because only the real evefimoments are of interest to
checking the accuracy and reliability of the simulation. us we first separate the real partaf(1,2) by applying the
Contentionally, most prominently featured is the qua-relation 1/@=*io)— P/w=Fimd(w). We encounter integrals
dratic response function in the field of nonlinear optics.of two different types:
x(01,w1;9,,w5) is at the heart of sum frequency generation
(SFG and second harmonic generatiofSHG, for o o o(wg,wy)
w1=w,). Although in the infinite wave length limit I=Ref def do,

; -1
B . w2+io+a[(w1+ w2+|0+b)
(q;=0) it takes an anisotropic medium for SHG to occur, for

finite wave lengths @ #0) SHG occurs also in an isotropic —(wy+wy+tio+c) 1], (A2)
system. It should be noted, however, that the description of

the interaction of electromagnetic waves with a material me- o0 o o(wq,w)) . .
dium requires the knowledge of more than the single longi- J=ReJ deJ_mdwlm[(wl+ wytio+b)

tudinal component of the fulk;j(d;,@1;0,,w;) response !

tensor. The generalization of the sum rules derived here to  —(w;+ w,+io+c) 1]. (A3)
the remaining components needs a further extension of the

analysis presented here. The integrall can be calculated in a straightforward fash-

As to the direct use of the multipoint functions and theion:
nonlinear fluctuation-dissipation theorem, it has been pointed
out recently by Mukamekt al. [16] that the nonlinear re- o dws o
sponse provides a probe for the stability matrix and the ' Rej_mmf_ dwip(wy,07)
Lyapunov exponents of a chaotic system.

The application and exploitation of our sum rules in the X[(w1+ wy+io+b) 1= (w+wy+io+c) 1]
contexts discussed above will be subject of future publica-
tions. Work on formulating an improved dynamical local =ij do, PJ“’ do p(w1,07)  ¢(w1,0))
field based on the quadratic response is currently in progress. wwpta ) ow  Heitwytb w;tw,tc
—m[p(a—b,~a)-¢(a—c,—a)]. (A4)
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APPENDIX A: ORDER OF INTEGRATION X[(w;+io+a) 1= (w;+wy,+io+b) 1]

FOR X MOMENTS

P02 |, viota)?

As mentioned above, the order of integration in E).is T w,tiotc—a

in general relevant. The momen¥s.; _;, X;_; andX_q

are exceptions in this regard because of their better high ) 4
frequency behavior. Using the Kramers-Kronig relations and (ot wytio+c) 7]

(9) one can readily verify that the order of integration can be

changed for these moments. For moments of higher com- * * p(wy,w3)
bined order this is not the case. To better understand this fact - PJ_ d“’ZPJ dwlm

we examine moments of the quadratic density response for a
noninteracting system, which is known explicitly: X[(@1+ wp+b) 1= (w+ wy+c) 1. (A5)
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Interchanging the order of integration in the integi@g) 2
and (A3) also changes the type of the integral. Therefore, A1,2=@{X1,1[0.2]+X71,a{0.2]+x1,1[1,2]—1"},
depending on the order of integration we do or do not en- (B3)
counter ther? term.

It is important to realize that—although these are double-
principal-value integrals—the PoincaBertrand theorem AZF@{—XZV({O,Z]—3X1,][0,2]—X,1,{0,2]+X2,({0,1]
does not apply here because wifffw;,w,)=w;'w,? and
r,,r,>0 the integrands under consideration do not uncondi- +2X1 10,1+ 6Xp o+t '+ Xo 4 1,21 — X1 1 1,2]}.
tionally satisfy the required convergence condit{d]. In (B4)
fact, for the Xy1, Xp2, Xz0, and the X; zmoments of
Xo(1,2) one finds that the double-principal-value integrals allHere once more théX term results from the change of the
vanish and ther” term alone contributes to the moment. order of integration. The term abbreviated withoccurs in
Using (A2) and(A3) we can now calculate théX's directly  poth theseA moments with opposite sign.
for ther,+r,=2 cases:

de dwl
f f 27 g —Zx'(0D). (B5)
dw2 dwl ry roy a, b)
2 @1 @2 Xol Even though we cannot calculate the momefits 5 and

X3-1, using the fact that X,d1,2]=X,d1,0],
X2d0,1]=X,40,2], andX; 41,2]=X; {0,2] we can obtain

_f dwl da)z
B the sum ofA; , andA,;:

—_< 1 T2/
o | 24 91 1o xo(@a,b)+6X; . (AB)

Interestingly, the oX; r, turn out to be identical for

(a,b)=(1,2), (0,1), and (0,2): Ag o+ AM:%{zxm[o,l] —2X,.10,2]+ X, d 1,20+ 6% 2

0:1-02 (q%—qi)
n _
Xy 1= 2Q1 d2 Q1 QZ' (A7a) =85 ﬂ—

(B6)

2m 2m

This result allows one to cross check kg , moment as the
classical limit of eitherZ, o or Z,,, Eqs.(52) and(54), re-
Xy o= nM Gu- q2, (A7b) ~ Skectively. Furthermore it enables us to verify classical lim-

2m  2m its, by matching the sum of the momemds, , andM 3 ; from
Egs.(53) and (54) with the direct classical result EGC5).

SXo e Uo Q2 01-Q2 A7 APPENDIX C: CALCULATION OF CLASSICAL
02N om (ATC) FREQUENCY MOMENTS

For calculating mixed frequency moments of
APPENDIX B: FREQUENCY MOMENTS OF &S Sclassid 012) we use the Kubo procedure which is based on

_ . L . th lati
Based on the definition oirl,rz in Eq. (48) it is straight- € refation

forward to calculate the following moments:

hd d(1)2 d(ul
Mrl,rzz fﬁ 5 _wrlwrz Sclassid 012

2 w2 ) —w 27T
Alvo=@{xly,1[0,2]+X,1,][0,2]+X,l'][0,1] N &rlJrrzSclassic(oj-z)
= (i)ra*re o (CD)
+X;-1[1,2]} A
~Oo- 01 di- 92 Only the ri+r,= even terms contribute. The case
T 2m Sa, om St (B1) r{=r,=0 just gives the static quadratic structure function.
Ther;=r,=1 case was recovered in EG9). Forr,=2,
r,=0 one finds
2
Ap1=— —{X_1{0,2]+X_1{0,2]+X; _4[0,1
017~ 15X 1024 X1 0,11+ X, 4[0.] ) _F dwzfm o,
+X,1’][1,2]} 2,0~ 7@? 700%‘”1 classid )
Jo- 02 4:-0 Q2 Qo d1
~ o S om Suy (B2) =~ m Su,~ am Sy (C2)
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In contrast toy, S¢assid@bc) is symmetric in all three ar- 1 . . . o
guments. Thereforap *w}! or w ’w,? moments can be ob- Ma 1t M2 o= = 5(€4,(0)2q,(0)24,(0))
tained by the rotation of the arguments. Furthermore, since
w(%:wi-l- 2wiwy+ wg and wgw,= —wi—wlwz all the sec- __ EE dre A4(qy- X))
ond order moments d¥;,5sic are connected and can be eas- NiTI Go-X
ily related to each othefcf. Egs. (55) and (56)]. For all oy . .
r,+r,=2 cases the classical quadratic dynamic structure X[(az-x)"+iar-%)1(g2-x)
functions sum up to linear static structure functions. 5 @100 X+ 01X+ X))

For the fourth order moments & ,<si{012) the results
are considerably more involved. The simplest is the Qo 01 0102  Qo- O O1°

ry=r,=2 moment, given by: —_— 5)

pm pm  pm pm’

Bearing in mind that through the continuity equatiénis
- d - d related to the particle velocity and that the velocities of two
MZZZJ ﬂf @1 ©0120,%Sc1a5sid 012) classical particles are not correlated, it is indeed expected

2w ) 2w that Eq.(C5) be correlation independent. On the other hand,

9\2 9\21 Q is linked to the equation of motion and thus contains a
:(iﬁ) (IE) N(qu(to)qu(tl)ng(tz))(o) force term. INM , the Coulomb interaction between par-
1 2 t,=t,=0 ticles gives rise to force-kinetic energy and force-force cor-

relation in(@o)(©.

1 . .
= (04 (0)24,(0)24,(0)”. (C3) .
MZZZNZ fdr‘e_BHe_i(QO'xi+q1'xj+Q2'XI)
: “,
For the 3-1 and 4-0 moments the higher time derivatives can " ) } .
be avoided by shifting the time argument under the equilib- X{(A1- X)) 2(d2- X)) 2= (A1 %) (A2 %)

rium average before taking a particular derivative. For in-

stance, the,;=3, r,=1 classical moment can then be writ- (01 %) (A2 X)) +i(d2- %) “(d1- X))}

ten as: -
=W‘q1q2+2(q1-qz)2+ngq0[(q1-qz)
X (gy- G2~ 203~ 203) — 29703]+ 2n
A 0 : (0) 2 2 2 2.2
M31= 't N(qu(_tl)qu(O)qu(tz_tl» lt,=t,=0 X (01-02)[9q,d1+9g, 021~ 2n"Ng, 4,005
1 . . . ﬁE
=~ [(€4,(0)4,(0)24,(0) +\—,p (G1-P)(A2-P) bpl Sq,+p,a,—p~ Say+a,-p.pl | -

+(04,(0)24,(0)24,(0)) 1. (Ca)

Here ¢,=4me?/p® andg, andhg, o, are the Fourier trans-

" - o forms of the pair and triplet correlation functions. The last
(0) (0)
In addition to(¢ee)™ a term(eee)"” comes up. For the term in (C6) is the analog of the third frequency moment

other fourth order moments we also have index permutations” ... . . . .
Coefficient for the linear dynamical structure function,

of these two, such ap0)(©. _ (BIV)S(q-P)2hy{Sq-p— So}: similarly to this coefficient

The two correlations can be calculated by using Hamilthe two contributions can be interpreted in terms of the
ton’s equations to replace the time derivatives and then intéprces acting on a particle oscillating in a local potential well
grating by part. We find thateee)® leads to a quite generated by the environment of other partidl8]. M,
simple expression: can be obtained from Eq§C5) and (C6).
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