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The quadratic density response function and the quadratic dynamical structure function~the Fourier trans-
form of the equilibrium three-point density correlations! contain important information about a many body
system; they are also ingredients for an improved dynamical mean field theory for strongly coupled Fermi
systems. We examine the analytic properties of the density response function and establish new single fre-
quency and double frequency moment sum rules. We relate the sum rule coefficients to the high frequency
expansion of the response function. Next we invoke the quadratic fluctuation-dissipation theorem to relate
these frequency moments to weighted frequency moments of the dynamical structure function. These latter
reduce to straight frequency moments in the high temperature classical and zero temperature degenerate limits.
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PACS number~s!: 05.30.2d, 71.10.2w, 71.45.Gm, 77.22.Ch

I. INTRODUCTION

Sum rules for the linear response functions have played
an important role throughout the development of electron-
liquid theory. The knowledge of the compressibility sum rule
and thev3 moment of the density-density response function
x(q,v) has led to much improved local field corrections.
Less explored are possible sum rules relating to quadratic
response functions. With a little reflection it is easy to realize
that the fundamental physical effects that operate in the gen-
eration of the linear sum rules—namely, symmetry and con-
servation laws—must also be responsible for creating sum
rules for quadratic response functions. Some of these sum
rules for the quadratic density-density response function
x(q1 ,v1 ;q2 ,v2) have already been identified: Golden, Kal-
man, and Datta@1# have shown the existence of a static com-
pressibility sum rule and established the high frequency be-
havior of x(q1 ,v1 ;q2 ,v2); more recently Tao and Kalman
@2# have derived a frequency moment sum rule, analogous to
the linearf -sum rule.

In this paper we will systematically establish and analyze
a number of sum rules for the quadratic density-density re-
sponse and the quadratic dynamical structure function. The
precise definition of the former is the relation

^%2q0
~2v0!&

~2!5
1

V (
q1 ,q2

E dv2

2p E dv1

2p

3x~q1 ,v1 ;q2 ,v2!F~q1 ,v1!F~q2 ,v2!

3dS ( v i D dS ( qi D , ~1!

where the twoF are external fields. For simplicity in writing
we assume throughout this paper allqi to be nonzero and
that alwaysv01v11v250 as well asq01q11q250. The
superscript~2! denotes second order in the external fields.

x(q1 ,v1 ;q2 ,v2) is related to the quadratic dynamical
structure function through the quadratic fluctuation-
dissipation theorem@3#. Thus, somewhat similarly to the lin-

ear case, frequency moment sum rules forx(q1 ,v1 ;q2 ,v2)
entail frequency moment sum rules for the quadratic dynami-
cal structure function. There are, however, deep structural
differences between the linear and the quadratic fluctuation-
dissipation theorems which prevent the analogy to be carried
too far.

In analogy to the linear time-dependent two point function
S(q,t)5(1/N)^%q(t)%2q(0)&

(0) the equilibrium dynamical
three point function is defined as

S~q0 ,t0 ;q1 ,t1 ;q2 ,t2!5
1

N
^%q0

~ t0!%q1
~ t1!%q2

~ t2!&
~0!.

~2!

While in the classical limit the density operators commute,
their ordering is of obvious relevance in the quantum case.
This is reflected in the chosen ordering of the arguments for
the three pointS. The superscript~0! indicates that the aver-
age is taken at equilibrium. Hence only the time differences
betweent1 , t2, and t3 matter and one can always shift the
time so that one of the time arguments becomes zero. The
time Fourier transform of Eq.~2! will be referred to as the
quadratic dynamical structure functionS(q0 ,v0 ;q1 ,v1;
q2 ,v2)[S(012). The six differentS(abc) fall into two
cycles. Cycling the operators leads to a phase factor
S(bca)5e2b\vaS(abc) @4#. The two different cycles can be
related throughS(abc)5S(2c2b2a) where the sign is of
relevance only for the frequency arguments since the qua-
dratic structure function is even in the combined wave-vector
arguments. The linear analog of all these relations is the
simpleS(q,v)5eb\vS(q,2v).

As in the linear case, the quadratic density response func-
tion and the quadratic structure function are connected
through a fluctuation-dissipation relation. The quadratic
fluctuation-dissipation theorem~QFDT! was established by
Golden, Kalman, and Silevitch for a classical system@5# and
later by Kalman and Gu for a quantum system@3#. But while
the linear fluctuation-dissipation theorem~FDT!
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$S~q,v!%odd5S~q,v!2S~q,2v!5S~q,v!~12e2b\v!

5
22\

n
x9~q,v!

relates the odd part of the structure function to the imaginary
part of the density response, the QFDT links theevenpro-
jection in the combined frequency arguments of the qua-
dratic structure function to thereal part of the quadratic den-
sity response. The QFDT can be written in three different
combinations. We will use the following forms:

$S~210!2S~201!%even5$S~210!2S~201!%~12e2b\v2!

52
4\2

n
$x8~q1 ,v1 ;q2 ,v2!

2x8~q2 ,v2 ;q0 ,v0!%, ~3a!

$S~120!2S~102!%even5$S~120!2S~102!%~12e2b\v1!

52
4\2

n
$x8~q1 ,v1 ;q2 ,v2!

2x8~q0 ,v0 ;q1 ,v1!%. ~3b!

@We define the static structure factor as the integral
Sq5*2`

` (dv/2p)S(q,v). Our S(q,v) differs from the one
used in Ref.@6# by a factor 2p/n. Our notation is also
slightly different from that of Ref.@4# where the symbolx̂ is
used forx. x8 and x9 stand for real and imaginary parts,
respectively. The linear and the quadratic versions ofx and
S are distinguished in this paper by the number of their ar-
guments.# While it is x8(a,b), the real part of the quadratic
density response, that appears in the QFDT, it should be kept
in mind that it is related to theimaginaryparta9(a,b) of the
quadratic polarizability through a(1,2)5( i4pe3/
q0q1q2) x(1,2). We note that causality requirements imply
that the quadratic density response function obeys Kramers-
Kronig relations for both frequency arguments indepen-
dently.

The usefulness of sum rules in designing, controlling and
checking approximation schemes for the calculation of re-
sponse functions is well established. The frequency moments
calculated through the sum rules play another formal role:
they are the coefficients of the high frequency expansion of
the response function. Very little is known about the analytic
structure of the quadratic quantities, the guideline provided
by the sum rules in this connection should be especially
valuable. The quadratic response functions govern the re-
sponse of electron gases to finite amplitude electromagnetic
perturbations; therefore the constraints imposed by the sum
rules are expected to have a significant bearing on the de-
scription of these processes. Somewhat less obviously, the
quadratic response and structure functions are fundamentally
linked to the correlational properties of interacting electrons
@7# and thus the quadratic sum rules can play a role in the
determination of thelinear response of a strongly correlated
electron liquid. In particular, as in such calculations pertur-
bative approaches are to be avoided, the sum rules can be
exploited to construct nonperturbative approximation
schemes.

The plan for this paper is as follows: In Sec. II we recal-
culate the known, and derive frequency moment sum rules
for the quadratic density response. We then discuss how the
frequency moments relate to the high frequency expansion of
the response function. Section III discusses sum rule rela-
tions for the quadratic dynamical structure function. Finally
we look at the high temperature, classical, and the zero tem-
perature limits of these sum rules. The Appendix provides
details on the derivation of classical frequency moments of
the quadratic structure function.

II. SUM RULES FOR THE QUADRATIC
RESPONSE FUNCTION

In this section we will analyze theva
ra-vb

rb frequency mo-
ments for the quadratic density response function beginning
with the moments of even combined powerr a1r b . The
r a-r b moment will be designated byXra ,r b

.

Xra ,r b
@a,b#:5E dvb

2p E dva

2p
va
ravb

rbx~qa ,va ;qb ,vb!.

~4!

The notation@a,b# refers to the order of integration which
will be understood as given in the square brackets and is, in
general, relevant~i.e., Xrb ,r a

@b,a#ÞXra ,r b
@a,b#). On the

other hand, renaming the variablesa↔b simply amounts to
changingqa↔qb in the result and does not change the type
of moment. Note thatx(a,b)5x(b,a), i.e., the quadratic
density response function is symmetric in its two arguments.
Normally we will considera51 andb52 but some other
combinations will be needed, too.

Sum rules will be obtained whenXra ,r b
can be expressed

in terms of ‘‘known’’ or simpler quantities. We will follow
Tao and Kalman@2# in the derivation of the first single fre-
quency moment of the quadraticx and then establish the
higher moments.

A. Single frequency moments

We can start with the trivial zeroth moment. It follows
from the plus-function character ofx(v1 ,v2)—causality re-
quires thatx(v1 ,v2) is a regular function in the upperv1
andv2 half-planes@8#—and from its sufficiently fast vanish-
ing for v1→`, v2→` @cf. Eq. ~13! below#, that

E
2`

` dv1

2p
x~q1 ,v1 ;q2 ,v2!5E

2`

` dv2

2p
x~q1 ,v1 ;q2 ,v2!50.

~5!

We can evaluate higher frequency moments directly by using
the Kubo procedure. The starting point is the density re-
sponse function as given by the fluctuation-dissipation theo-
rem in the time domain. For comparison, we quote the linear
relations as well.
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x~q,t !52 i
Q~ t !

\V
^@%q~0!,%2q~2t !#&,

x~q1 ,t1 ;q2 ,t2!52
Q~ t1!Q~ t2!

2\2V
$Q~ t22t1!

3^†@%2q0
~0!,%2q1

~2t1!#,%2q2
~2t2!‡&

1Q~ t12t2!

3^†@%2q0
~0!,%2q2~2t2!#,%2q1

~2t1!‡&%.

~6!

HereQ(t), etc., are step functions ensuring the causal be-
havior of the response functions. Taking now the derivative
of Eq. ~6! with respect tot1 at t150, we find that the right-
hand side has only one nonvanishing contribution. All other
terms vanish because thed distributions as the derivatives of
Q and the productQ(t2)Q(2t2) leave us with vanishing
equal-time commutators. The result contains an additional
factor 1

2 which comes from the step functionQ(t1) taken at
t150.

]

]t1
x~q1 ,t1 ;q2 ,t2!U

t150

52 i
Q~ t2!

4\3V

3^†@%2q0
~0!,@%2q1

~0!,H#‡,%2q2
~2t2!#&

~0!.

~7!

So far no specification of the many body Hamiltonian has
been necessary. To proceed further we assume that the sys-
tem is an electron gas with a neutralizing background@a
quantum OCP~one component plasma!#. With this Hamil-
tonian now the inner, equal time double commutator can be
evaluated exactly, resulting in

†%2q0
~0!,@%2q1

~0!,H#‡5\2
q0•q1
m

%q2

and leading to the relation

]

]t1
x~q1 ,t1 ;q2 ,t2!U

t150

5
q0•q1
4m

x~q2 ,t2!. ~8!

In the frequency domain this amounts to

E
2`

` dv1

2p
v1x~q1 ,v1 ;q2 ,v2!5 i

q0•q1
4m

x~q2 ,v2!. ~9!

This is the basic sum rule established by Tao and Kalman
@2#.

The second derivative of Eq.~6! with respect tot1 can be
calculated directly as well. Using thed distribution’s prop-
ertiesxd(x)50 andxd8(x)52d(x) we find the form

]2

]t1
2x~q1 ,t1 ;q2 ,t2!

52d~ t1!
q0•q1
2m

x~q2 ,t2!2d~ t22t1!
q1•q2
2m

x~2q0 ,t1!

1
Q~ t1!Q~ t2!

2\2V
$Q~ t22t1!

3^†@%2q0
~0!,%̈2q1

~2t1!,%2q2
~2t2!‡

~0!

1Q~ t12t2!^†@%2q0
~0!,%2q2

~2t2!#,%̈2q1
~2t1!‡&

~0!.

~10!

Now letting t1 approach 0, the second term on the right and
the second term inside the curly brackets vanish and the re-
maining inner commutator can be evaluated:

@%2q0
,%̈2q1

#522\2
q0•q1
m (

p

p•q1
m

cp1q2/2
1 cp2q2/2

.

Recalling that the particle-current density is
jq25(p(p/m)cp1q2/2

1 cp2q2/2
, the result can be written as

]2

]t1
2x~q1 ,t1 ;q2 ,t2!U

t150

52
q0•q1
2m Fx~q2 ,t2!d~ t1!2

Q~ t2!

V

3^@q1• jq2~0!,%2q2
~2t2!#&

~0!G
t150

. ~11!

The delta distributiond(t1) on the right constitutes an infi-
nite constant att150, but when in the next subsection we
take t250, the term in question will vanish due to
x(q2 ,t250)50. The second term on the right contains the
linear density-current-density response functionx j% , a vec-
tor.

A Fourier transformation into the frequency domain
yields

E
2`

` dv1

2p
v1
2x~q1 ,v1 ;q2 ,v2!

5
q0•q1
2m

$Cx~q2 ,v2!2 iq1•xj%~q2 ,v2!%, ~12!

whereC is the infinite constant of dimensiont21 resulting
from the delta distributiond(t1).

The origin of this divergent term can be understood by
contemplating the exact asymptotic high frequency behavior
of x(q1 ,v1 ;q2 ,v2) that is of the form@1# (x is dominated
by x8 asv1→`, v2→`)
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x8~q1 ,v1→`;q2 ,v2→`!5
n

2m2

1

v0v1v2

3H q02v0
~q1•q2!1

q1
2

v1
~q0•q2!

1
q2

2

v2
~q0•q1!J . ~13!

It is clear that for fixedv2 the leading term in the integrand
goes asv1

22 , generating a divergentv1 integral in Eq.~12!.
This consideration also shows that more severe divergences
would arise from higher than second order single frequency
moments. On the other hand, as it is obvious from Eq.~9!,
there is no divergence problem for thev1 moment which, for
parity reasons, combines only with thev1

23 term in Eq.~13!.
More will be said on this later.

We can now proceed to find the double frequency mo-
ments by either taking the derivative of Eqs.~8! and ~11!
with respect tot2 at t250 or multiplying Eqs.~9! and ~12!
by and then integrating overv2.

B. Double frequency moments

The double frequency moments fall into two classes, de-
pending on whetherr 11r 2 is even or odd. For parity reasons
only x8(1,2) contributes to the former and onlyx9(1,2) con-
tributes to the latter. First we review the even moments.

Starting from Eq.~4! with r 15r 2521 one finds as a
direct result of the Kramers-Kronig relation

X21,21@1,2#5E dv2

2p E dv1

2p

1

v1v2
x~q1 ,v1 ;q2 ,v2!

52
1

4
x~q1,0;q2,0![2

1

4
xq1 ,q2

. ~14!

In the long wavelength limit (q1→0, q2→0) the static
xq1 ,q2

is subject to a quadratic compressibility sum rule@1#,
from which follows that

xq1 ,q2
→

n

2

~]p/]n!T2n~]2p/]n2!T
~]p/]n!T

3 .

Combining now Eq.~9! and the Kramers-Kronig relations
for x(1,2) we find the frequency quotient sum rule

X1,21@1,2#5E dv2

2p E dv1

2p

v1

v2
x~q1 ,v1 ;q2 ,v2!

52
q0•q1
8m

xq2
. ~15!

The order of integration can be changed in this case~i.e.,
X1,21@1,2#5X21,1@2,1#), so that we find the momentX21,1
by just interchanging the indices of the arguments in Eq.
~15!.

X21,1@1,2#52
q0•q2
8m

xq1
. ~16!

In the long wavelength limit the staticxq1
andxq2

are subject
to the routine linear compressibility sum rule.

These latter frequency moments are of zeroth order in the
combined power ofv1 and v2. The remaining zero order
moment isX0,0, a mere integration overx(1,2). But in view
of Eq. ~5!, the contour integral vanishes and so doesX0,0.

X0,0@1,2#5E dv2

2p E dv1

2p
x~q1 ,v1 ;q2 ,v2!50. ~17!

Turning now to the second order moments, we note that
the momentX1,1 is the quadratic equivalent of the well
known f -sum rule@2#

X1,1@1,2#5E dv2

2p E dv1

2p
v1v2x~q1 ,v1 ;q2 ,v2!

5
n

2

q0•q1
2m

q2
2

2m
. ~18!

The order of integration is relevant here and this explains
why the right side is not symmetric in the indices. Renaming
the variables gives the momentX1,1@2,1# with changed order
of integration. The noncommutability of thev1 andv2 inte-
gration results in adX term, which will play a role in Sec.
III. More details are given in Appendix A.

X1,1@1,2#2X1,1@2,1#5dX1,15
n

2

q1•q2
2m

q1
22q2

2

2m
. ~19!

The X2,0 moment we find from Eq.~11!. After setting
t250, the divergent term vanishes, the commutator can be
evaluated and Fourier transformation into thev1-v2 domain
produces theX2,0 moment. Alternatively, we can integrate
Eq. ~12! overv2 . In this case the plus-function character of
x(v2) causes the first term in Eq.~12! to vanish and one is
left with

X2,0@1,2#5E dv2

2p E dv1

2p
v1
2x~q1 ,v1 ;q2 ,v2!

5n
q0•q1
2m

q1•q2
2m

. ~20!

Renaming the variables here gives theX2,0@2,1# moment.
Changing the order of integration in~20! createsX0,2@2,1#
which vanishes according to Eq.~5!. Therefore

dX2,05X2,0@1,2#2X0,2@2,1#5X2,0@1,2#. ~21!

By making use of Puff’sv3-moment sum rule@9# for the
linearx we can write down one of the fourth order moments
of x(1,2), namely,

X1,3@1,2#5E dv2

2p E dv1

2p
v1v2

3x~q1 ,v1 ;q2 ,v2!

5
n

2

q0•q1
2m

q2
2

2mH vp
21

q2
2

2m F\2q2
2

2m
14^«kin&G

1
vp

2

N (
k

~k•q2!
2

k2q2
2 @Sq22k2Sk#J , ~22!
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wherevp
254pne2/m and^«kin& is the expectation value of

the kinetic energy per electron in the interacting system.
The other fourth order momentsX2,2 andX3,1 contain di-

verging contributions, that can be understood in view of the
remarks made earlier; cf. Eq.~13!.

Turning now to the odd moments we note that the two
momentsX0,21@1,2# andX21,0@1,2# vanish:

X0,21@1,2#5E dv2

2p E dv1

2p

1

v2
x~q1 ,v1 ;q2 ,v2!50

~23!

because of Eq.~5! and

X21,0@1,2#5E dv2

2p E dv1

2p

1

v1
x~q1 ,v1 ;q2 ,v2!

5 i
1

2E dv2

2p
x~q1,0;q2 ,v2!50 ~24!

for similar reasons.
The first order moments, bothX1,0 andX0,1, again trivi-

ally vanish because of the plus-function behavior of
x(v1 ,v2) andx(v2).

The situation is different for the two third order moments
X1,2 andX2,1: both lead to divergent integrals, as is obvious
from Eqs.~9! and ~12!.

All the moments listed, with the exception ofX1,3@1,2#,
are coupling independent and thus are exhausted both by
x0(1,2), the quadratic response function of the noninteract-
ing gas and byxRPA(1,2), the response calculated in the
random phase approximation:

xRPA~q1 ,v1 ;q2 ,v2!5
x0~q1 ,v1 ;q2 ,v2!

e0~q0 ,v0!e0~q1 ,v1!e0~q2 ,v2!
,

wheree0(q,v) is the Lindhard dielectric function. The as-
sertion concerningx0(1,2) can be verified by direct calcula-
tion.

In summary, there are five nontrivial sum rules for
X21,1, X1,21, X1,1, X2,0, andX1,3, all of them pertaining to
the real partx8(q1 ,v1 ;q2 ,v2). This is in contrast to the
linear situation where one deals with the frequency moments
of the imaginary partx9(q,v). Whilex9(q,v) vanishes very
fast for highv values and thus the construction of the linear
frequency moments is never problematic, the high frequency
behavior ofx8(q1 ,v1 ;q2 ,v2) is governed by the inverse
power ofv1 andv2 and its leading terms are given by the
exact high frequency expansion, Eq.~13!.

In order to infer the limitations on the existence of the
frequency moments ofx(q1 ,v1 ;q2 ,v2) one has to let
v1→` for fixed v2 in Eq. ~13!:

x8~q1 ,v1→`;q2 ,v2!>1
V2,2

v1
2v2

2 1
V3,1

v1
3v2

1
V4,0

v1
4 ,

~25!

V2,2522n
q0•q1
2m

q2
2

2m
,

V3,1524n
q0•q1
2m

q1•q2
2m

,

V4,052n
q1•q2
2m

q0•~3q11q2!

2m
.

The resulting expression Eq.~25! shows that the integral
generating thev1

1 moment~to which theV2,2 term, for parity
reasons, does not contribute! exists, while that generating the
v1
2 moment is divergent, in accordance with Eqs.~9! and

~12!.
The high frequency expansion Eq.~13! and its offspring

Eq. ~25! are based on the asymptotic behavior of
x(q1 ,v1 ;q2 ,v2) in the hydrodynamic limit. A more general
approach can be generated, again in some analogy with the
linear case, through an expansion in terms of the frequency
momentsXra ,r b

. This is made possible by exploiting that

x(q1 ,v1 ;q2 ,v2) is its own double Hilbert transform:

x~q1 ,v1 ;q2 ,v2!52PE dv̄2

p

3PE dv̄1

p

x~q1 ,v̄1 ;q2 ,v̄2!

~v12v̄1!~v22v̄2!
.

~26!

Lettingv1→`andv2→` ~in this order!, the high frequency
expansion of the real part can be evaluated by the steps in-
dicated below:

x8~q1 ,v1 ;q2 ,v2!52PE dv̄2

p
PE dv̄1

p

3
x8~q1 ,v̄1 ;q2 ,v̄2!

~v12v̄1!~v22v̄2!

>2PE dv̄2

p E dv̄1

p

x8~q1 ,v̄1 ;q2 ,v̄2!

v1~v22v̄2!

3F11
v̄1

v1
1S v̄1

v1
D 21••• G

5
1

v1
E dv̄1

p F11
v̄1

v1
1S v̄1

v1
D 21••• G

3x9~q1 ,v̄1 ;q2 ,v2!. ~27!

The resultingv1
n moments ofx9(1,2) for n50,1,2 can be

evaluated with the aid of Eqs.~5!, ~9!, and ~12!, and their
high frequency expansion can be calculated from the known
asymptotic behavior of the linear response function. For
these lower order moments it is also permissible to expand
bothKramers-Kronig denominators which then provides
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x8~q1 ,v1 ;q2 ,v2!>2E dv̄2

p E dv̄1

p

x8~q1 ,v̄1 ;q2 ,v̄2!

v1v2

3F11
v̄1

v1
1•••GF11

v̄2

v2
1•••G

524H X1,1

v1
2v2

2 1
X2,0

v1
3v2

1
X0,2

v1v2
3

1
X1,3

v1
2v2

4 1
X2,2

v1
3v2

3 1•••J . ~28!

The momentsX1,1, X2,0, andX0,2 as given in Eqs.~18!,
~20!, etc. are indeed in agreement with the corresponding
Vm,n coefficients in Eq.~25!. As to then>3 moments of
x9(1,2), no general result is available; nevertheless the
n53 moment for the noninteractingx0(1,2) can be calcu-
lated, yielding the correctV4,0 coefficient in Eq.~25!.

One can contemplate the more general high frequency
expansion of x8(1,2) expressed asx8(q1 ,v1 ;q2 ,v2)
5(m,n(m1n>4,even;m>2)Vm,n /v1

mv2
n . As it is clear from the

foregoing the expansion form1n54 is unaffected by cor-
relations and therefore would be exhausted both byx08(1,2)
andxRPA8 (1,2). Correctional contributions are to show up in
V2,4, V3,3, andV4,2. The first two can be derived from Eqs.
~22! and~12!; the calculation ofV4,2 hinges upon the evalu-
ation of thev1

3 moment ofx8(1,2).~Details of the expansion
will be discussed elsewhere.!

Moments of the~frequency and wave-number! shifted
x(q0 ,v0 ;q1 ,v1) and x(q0 ,v0 ;q2 ,v2) are also of interest
and will be, in fact, needed in the next section. To transform
such moments into the form~4! we can substitute, shift, and
rename the integration variables. The procedure is illustrated
below for the caser 15r 251:

E dv2

2p E dv1

2p
v1v2x8~q1 ,v1 ;q0 ,v0!

5E dv1

2p E dv2

2p
v1v2x8~q1 ,v1 ;q0 ,v0!1dX1,1

5E dv1

2p E dv0

2p
v1~2v02v1!x8~q1 ,v1 ;q0 ,v0!

1dX1,1

52X1,1@0,1#2X0,2@0,1#1
n

2

q1•q2
2m

q1
22q2

2

2m
.

~29!

The change of the order of integration in the second step is
necessary in order to facilitate the substitution from the set
(v1v2) to the set (v0v1): in the original order the replace-
ment ofv2 by v052(v11v2) after the integration over
v1 would not be allowed.dX1,1 is taken from Eq.~19!. That
this can be done is not quite obvious, since in~19! the inte-
gration variables arev1 andv2, while in ~29! v1 andv0.
The justification is detailed in Appendix A.

III. SUM RULES FOR THE QUADRATIC S

The knowledge of theXr1 ,r2
moments allows one to gen-

erate similar frequency moments for the quadratic dynamical
structure functionS. Since the ordering of the density opera-
tors within theS functions is important, one has to adhere to
a convention as to the chosen ordering for the definition of
the moments. We choose the moments ofS(201) and
S(102) in the following; moments for other orderings or of
symmetrized combinations can, however, be generated by a
similar procedure. Let us defineZr1 ,r2 as

Zr1 ,r2:5E
2`

` dv2

2p E
2`

` dv1

2p
v1
r1v2

r2

3@12~21!r11r2e2b\v2#S~201!. ~30!

The exponential in the integrand stems from the inclusion of
both S cycles; cf. Eq.~3a!. Its sign is determined by the
combined parity of the frequencies. The other moment we
will use is Z̄r1 ,r2, defined as

Z̄r1 ,r2:5E
2`

` dv2

2p E
2`

` dv1

2p
v1
r1v2

r2

3@12~21!r11r2e2b\v1#S~102!

5E
2`

` dv2

2p E
2`

` dv1

2p
v1
r1v2

r2

3@12~21!r11r2e1b\v1#S~201!. ~31!

To find suchZ and Z̄ moments we multiply the QFDT,
Eqs. ~3a! and ~3b!, respectively, byv1

r1v2
r2 and integrate

over both frequencies. Under the integral the two different
S cycles can be combined by flipping the signs of allv i for
oneS. For evenr 11r 2 Zr1 ,r2 then is given in terms ofX
moments as

Zr1 ,r25
2\2

n HXr1 ,r2
@1,2#2~21!r1E

2`

` dv2

2p E
2`

` dv0

2p

3~v01v2!
r1v2

r2x8~q0 ,v0 ;q2 ,v2!J . ~32!

For Z̄r1 ,r2 we find accordingly

Z̄r1 ,r25
2\2

n HXr1 ,r2
@1,2#2~21!r2E

2`

` dv2

2p

3E
2`

` dv1

2p
v1
r1v2

r2x8~q0 ,v0 ;q1 ,v1!J , ~33!

where special care has to be taken with the double integral.
See Appendix A for more discussion.

Now we can immediately write down theZ1,1 moment
usingX1,1 and the fact thatX0,2 vanishes. Note that due to the
symmetry of Eq.~18! in the indices 0 and 1 the moments
X1,1@1,2# andX1,1@0,2# are identical.
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Z1,15
2\2

n
$X1,1@1,2#1X1,1@0,2#%

52\2
q0•q1
2m

q2
2

2m
. ~34!

The 2-0 moment is given in terms ofX2,0 andX1,1.

Z2,05
2\2

n
$X2,0@1,2#2X2,0@0,2#22X1,1@0,2#2X0,2@0,2#%

54\2
q0•q1
2m

q1•q2
2m

. ~35!

The momentZ0,2 is composed of twoX0,2 moments and thus
vanishes. More generally it can be seen from Eq.~5! and the
QFDT, Eq.~3a!, that allZ moments withr 150 vanish.

The correspondingZ̄1,1 moment is found according to Eq.
~29!:

Z̄1,15
2\2

n
$X1,1@1,2#1X1,1@0,1#1X0,2@0,1#2dX1,1%

~36!

which reduces to

Z̄1,152\2
q0•q2
2m

q1
2

2m
. ~37!

In calculatingZ̄0,2 andZ̄2,0 we encounter integrals similar to
~29! but creating adX0,2 an dX2,0, respectively, when the
order of integration is changed:

Z̄0,25
2\2

n H 2X0,2@1,2#2E dv2

2p E dv1

2p

3v2
2x8~q1 ,v1 ;q0 ,v0!J

52
2\2

n H E dv1

2p E dv0

2p
~2v02v1!

2

3x8~q1 ,v1 ;q0 ,v0!1dX0,2J
52

2\2

n HX2,0@0,1#12X1,1@0,1#1X0,2@0,1#

2n
q0•q2
2m

q1•q2
2m J 54\2

q0•q2
2m

q1•q2
2m

~38!

and

Z̄2,05
2\2

n
$X2,0@1,2#2X0,2@0,1#2dX2,0%50. ~39!

Observe thatZ̄r1 ,r2(q1 ,q2)5Zr2 ,r1(q2 ,q1), which shows

that thev1 and v2 integrations commute as far as theZ
moments are concerned. This is true, even though the indi-
vidual X moments which combine into a particularZ mo-
ment are obviously sensitive to the order of integration. The
reason for the difference between the behavior of theZ and

X moments has to be sought in theZ moments’ expected
much faster vanishing forv1→`, v2→`, and rendering
the v1-v2 integrals unconditionally convergent~cf. Appen-
dix A for details!.

To find the oddZ1,0 moment we divide the QFDT, Eq.
~3a!, by (12e2b\v2) before integrating overv2 . At this
point we can employ the single frequency moment Eq.~9!
and the linear FDT to find the additional relationship

E
2`

` dv1

2p
v1$S~201!2S~210!%5

\

m
q0•q1S~q2 ,v2!.

~40!

An equivalent expression which has the indices 0 and 2 ex-
changed can be derived in the same manner.

If we now integrate Eq.~40! overv2, we are again able to
combine the two differentS cycles by flipping the signs of
all v i for oneS. The result relates the frequency integral of
the dynamical quadratic structure function to the static linear
structure functionSq :

Z1,05\
q0•q1
m

Sq2. ~41!

The above procedure is not applicable to the QFDT, Eq.
~3b!, with our chosen order of integration. Nevertheless, ex-
ploiting that the order of integration is not relevant we can
write down the correspondingZ̄0,1 moment:

Z̄0,15\
q0•q2
m

Sq1. ~42!

If we first multiply Eq. ~40! by v2 and then integrate the
f -sum rule for the linear dynamical structure function can be
used to find theZ1,1 moment, Eq.~34!, again.

The definition of the static quadratic structure function@3#

Sq1 ,q2:5E
2`

` dv2

2p E
2`

` dv1

2p

1

3
$S~012!1S~120!1S~201!%

could be viewed as another frequency moment if the differ-
ent cycles ofS are combined:

E
2`

` dv2

2p E
2`

` dv1

2p

1

3
~11e1b\v11e2b\v2!S~201!5Sq1 ,q2.

~43!

The moments~34!, ~35!, ~37!, ~38!, and ~41! constitute
sum rules for the quadratic dynamic quantum structure func-
tion. One should keep in mind that the exponential in the
integrand is a consequence of the fact that the density opera-
tors do not commute for a quantum system. It is also inter-
esting to note that the first order moment is at leastO(\) and
correlation-dependent while the second order moments are
O(\2) and correlation-independent. The sum rules derived
in this section can provide guidance in the construction of an
approximation for a dynamical density response function.
This will be discussed elsewhere.
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A. Classical limits

The high temperature, classical limits (b\→0) of theZ
moments can be calculated directly and lead to pure fre-
quency moments ofSclassic(012),

Mr1 ,r2
:5E

2`

` dv2

2p E
2`

` dv1

2p
v1
r1v2

r2Sclassic~012!.

Some of these have been derived earlier@5#. The method
is recapitulated and extended to higher moments in Appen-
dix C. Here we show how theb\→0 limit can be obtained
directly from the results above. It is obvious that the classical
M moments satisfyMr1 ,r2

(q1 ,q2)5Mr2 ,r1
(q2 ,q1). A com-

parison with the direct classical calculation is given in Ap-
pendix C.

First we need to expandS(201) in \. An expression for
S in terms ofx8(q1 ,v1 ;q2 ,v2) has been derived in@3#:

S~201!52
4\2

nD
$~12e2b\v1!@x8~12!2x8~20!#

2~12e1b\v2!@x8~12!2x8~01!#%. ~44a!

D stands for

D522@sinh~b\v0!1sinh~b\v1!1sinh~b\v2!#

52\3b3v0v1v21O~\5!. ~44b!

In the limit \→0 S can be expanded as

S~201!5S~012!u\501\dS~201!1O~\2!. ~45!

Then, to lowest order in\, one finds from Eq.~44a!

S~012!u\50[Sclassic~012!

52
4

nb2 Fx8~12!

v1v2
1

x8~20!

v2v0
1

x8~01!

v0v1
G .

~46!

This is the known classical QFDT expression@10#. The first
quantum correction, linear in\, is found to be

dS~201!5
2

nb Fv1x8~20!

v2v0
2

v2x8~01!

v0v1
1

~v12v2!x8~12!

v1v2
G .

~47!

Herex8 is understood to stand forx8(\50). In contrast to
Sclassic(012) the ordering of the arguments indS(201) is of
relevance and specifically we havedS(201)52dS(102).
The quantum correction tox8 can be ignored for it is at least
of order\2. This can be inferred from the observation that
the occurrence of\ is linked to the frequencies and/or wave
vectors and thatx8(a,b) is an even function in the combined
frequency and the combined wave-vector arguments. Be-
cause variousv1-v2 moments ofdS contribute to the clas-
sical limits we will define

D r1 ,r2
:5E

2`

` dv2

2p E
2`

` dv1

2p
v1
r1v2

r2dS~201!. ~48!

For the calculation of theD r1 ,r2
we refer to Appendix B.

Note thatDm,n(q1 ,q2)52Dn,m(q2 ,q1).
Before taking the classical limit of the variousZ moments

we observe that upon taking the classical limit of expression
~40!, the twoSclassic terms on the left-hand side cancel and
to order\ only the twodS of different orderings contribute.
The integration overv1 reduces the quadraticx8 to linear
x9 by virtue of Eq. ~9! and reproduces the classical linear
FDT.

SinceSclassic is also an even function in its combined
v1-v2 arguments, all moments with odd combined powers
in v1 and v2 vanish due to parity@1#. Starting with the
classical limit of Z1,0 Eq. ~41!, to O(\0) and O(\2) the
resulting equations yield vanishing oddM1,0 andM1,2 mo-
ments. The equation linear in\ yields

M1,15
2

b
D1,02

q0•q1
bm

Sq2,

which using~B1! gives the known classical frequency mo-
ment

M1,15
q1•q2
bm

Sq0. ~49!

It is the terms stemming fromdS that restore the 1-2 sym-
metry in the classical expression. The vanishingZ0,1 pro-
vides to order\ an equation forM0,2

M0,25
2

b
D0,1,

which using~68! becomes

M0,252
q0•q2
bm

Sq12
q1•q2
bm

Sq0. ~50!

Turning now to the classical limits ofZ1,1 andZ2,0, Eqs.~34!
and~35!, to order\2 they lead to theM1,3 andM2,2moments
of Sclassic in terms ofD moments:

M1,35
2

b
D1,22

q0•q1
bm

q2
2

bm
, ~51!

M2,25
2

b
D2,122

q0•q1
bm

q1•q2
bm

. ~52!

The momentZ0,2 provides the relationM0,4 5(2/b)D0,3.
By taking the\→0 limit of Z̄1,1 andZ̄0,2 we find to order

\2 the momentsM3,1 and againM2,2,

M3,152
2

b
D2,12

q0•q2
bm

q1
2

bm
, ~53!

M2,252
2

b
D1,222

q0•q2
bm

q1•q2
bm

. ~54!

Furthermore the momentZ̄0,2 provides the relationM4,0
52(2/b)D3,0. The comparison with direct classical calcu-
lations is given in Appendix C. Note that the symmetry of
Sclassic(012) in all three arguments implies the relationships
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M2,0~q0 ,q1!5M2,0~q0 ,q2!

5M2,0~q1 ,q2!12M1,1~q1 ,q2!1M0,2~q1 ,q2!

~55!

and

M4,0~q0 ,q1!5M4,0~q0 ,q2!

5M4,0~q1 ,q2!1M0,4~q1 ,q2!14M3,1~q1 ,q2!

14M1,3~q1 ,q2!16M2,2~q1 ,q2!. ~56!

B. Zero temperature limit

The sum rules given in previous sections all hold for ar-
bitrary temperature. Now taking the limitT→0 we can see
immediately from the relation~43! thatS(201) must vanish
if v1.0 or v2,0. This comes as no surprise, since in
S(201) we have a creation operatorc1(v2) acting on the
ground state from the right and an annihilation operator
c(v1) acting on the ground state from the left. A similar
argument holds for all the six differentS functions atT50
and makes each of them vanish in all but two adjacent do-
mains of thev1-v2 plane which is divided into six domains
by the two axes and the linev15v2. In turn, in any of these
six domains only two of theS functions are not vanishing
@3#. This can be compared with the linear case, where
S(q,v) vanishes forv,0 atT50. In Eq.~3a! now one can
concentrate on domains where only one of theS functions
survives. For example, in the quadrantv1,0,v2.0, where
S(201) does not vanish, we can distinguish two cases and
find that Eq.~3a! reduces to the much simpler expressions
for S(201):

0,v2,2v1 :S~201!5
4\2

n
$x8~12!2x8~20!%,

~57a!

0,2v1,v2 :S~201!5
4\2

n
$x8~12!2x8~01!%.

~57b!

The simplified relationships do not allow one, however, to
obtain simpler sum rule expressions. This is due to the do-
main restrictions in~57a! and~57b!. The integration over the
unrestrictedv1-v2 plane which generates the sum rule ex-
pressions sweeps over all six domains and picks up contri-
butions by various combinations of theS functions. Thus the
formal definitions of the moments Eqs.~30! and~31! remain
unaffected, although it is more convenient to eliminate the
exponential factor in theT50 limit and rewrite the defini-
tions ofZr1 ,r2 and Z̄r1 ,r2 as

Zr1 ,r25E
2`

` dv2

2p E
2`

` dv1

2p
v1
r1v2

r2$S~012!u3,41S~210!u1,6

2S~201!u5,62S~102!u2,3% ~58!

and

Z̄r1 ,r25E
2`

` dv2

2p E
2`

` dv1

2p
v1
r1v2

r2$S~021!u4,51S~120!u1,2

2S~201!u5,62S~102!u2,3%. ~59!

The u i indicates that the integration is to be carried out in that
domain only. The numbering of domains starts with the first
quadrant and proceeds clockwise~cf. Ref. @3#!.

IV. CONCLUSIONS

In this paper we have studied the analytic properties of the
longitudinal quadratic response function and the related qua-
dratic dynamical structure function for Fermi systems at ar-
bitrary temperatures. Although the basic relations are inde-
pendent of the details of the interaction we have focused an
the electron liquid~a quantum OCP!. For the response func-
tion we have systematically established single frequency mo-
ment and double frequency moment sum rules, which bear
some resemblance to the linearf -sum rule. The analytic
properties of the response function make the frequency mo-
ments sensitive to the order of integration. We have shown
that the coefficients of the high frequency expansion of the
real part of the response function can be expressed in terms
of its own frequency moments. This is in marked contrast to
what happens in the linear case where the similar expansion
links the real part to the moments of the imaginary part. For
the quadratic dynamical structure function we have defined
weighted frequency moments and have used the quadratic
fluctuation-dissipation theorem to relate them to the fre-
quency moments of the density response function. In the
high temperature classical limit these weighted moments re-
duce to straight frequency moments that agree with the mo-
ments obtained by the straightforward extension of the Kubo
procedure to the three point correlations.

It is not within the scope of this paper to exploit possible
applications of the newly established sum rules. In view of
the increasing interest in the use of nonlinear response func-
tions and multipoint correlations in the description of many
body systems there is little doubt that these sum rules, simi-
larly to their linear counterparts, will turn out to be effective
theoretical tools. Thus some indication of the possible direc-
tions these applications may take seems to be useful.

We have already alluded to the intimate relationship be-
tween linear and quadratic response functions. It is via the
quadratic fluctuation-dissipation theorem that one can show
that quadratic responsê%& (2), correlational linear response
^%%& (1), and equilibrium three point correlation̂%%%& (0)

determine each other@4#. A recently established non-
perturbative scheme@11# exploits this by showing that a
simple-minded approximation for the quadratic response
leads to a rather sophisticated improvement in the calculation
of the linear response of a classical OCP.

The use of the static quadratic response in the description
of liquid and solid metals~in the effective one component
approximation! has been well established at least since the
seminal paper by Lloyd and Sholl@12#. It has, however, been
pointed out recently by Ashcroft and collaborators@13# that
the interactions induced by fluctuations require the descrip-
tion in terms of the dynamical quadratic response function.

In a slightly different context, in the calculation of the

3526 54J. M. ROMMEL AND G. KALMAN



energy loss of a charged particle moving through a metal the
contribution to theZ3-dependent portion of the energy loss
~the so-called Barkas correction, discriminating, e.g., be-
tween the energy loss of a proton and that of an antiproton!
comes from quadratic response~the linear response provides
only a charge-symmetric term! @14#. It is well-known that the
linear contribution to the stopping power is controlled by the
linear f -sum rule: in analogy, a quadratic frequency moment
sum rule is expected to provide an important constraint for
the first nonlinear contribution.

Another increasingly important use for nonlinear sum
rules originates from the growing popularity of numerical
simulations of correlated many body systems@15#. The sum
rules provide one of the few exact monitoring controls for
checking the accuracy and reliability of the simulation.

Contentionally, most prominently featured is the qua-
dratic response function in the field of nonlinear optics.
x(q1 ,v1 ;q2 ,v2) is at the heart of sum frequency generation
~SFG! and second harmonic generation~SHG, for
v15v2). Although in the infinite wave length limit
(qi50) it takes an anisotropic medium for SHG to occur, for
finite wave lengths (qiÞ0) SHG occurs also in an isotropic
system. It should be noted, however, that the description of
the interaction of electromagnetic waves with a material me-
dium requires the knowledge of more than the single longi-
tudinal component of the fullx i jk(q1 ,v1 ;q2 ,v2) response
tensor. The generalization of the sum rules derived here to
the remaining components needs a further extension of the
analysis presented here.

As to the direct use of the multipoint functions and the
nonlinear fluctuation-dissipation theorem, it has been pointed
out recently by Mukamelet al. @16# that the nonlinear re-
sponse provides a probe for the stability matrix and the
Lyapunov exponents of a chaotic system.

The application and exploitation of our sum rules in the
contexts discussed above will be subject of future publica-
tions. Work on formulating an improved dynamical local
field based on the quadratic response is currently in progress.
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APPENDIX A: ORDER OF INTEGRATION
FOR X MOMENTS

As mentioned above, the order of integration in Eq.~4! is
in general relevant. The momentsX21,21, X1,21 andX21,1
are exceptions in this regard because of their better high
frequency behavior. Using the Kramers-Kronig relations and
~9! one can readily verify that the order of integration can be
changed for these moments. For moments of higher com-
bined order this is not the case. To better understand this fact
we examine moments of the quadratic density response for a
noninteracting system, which is known explicitly:

x0~1,2!5(
p

np
2 (
s561

$~v11 io1a1!
21

3@~v11v21 io1b!212~v11v21 io1c1!
21#

1~v21 io1a2!
21@~v11v21 io1b!21

2~v11v21 io1c2!
21#%. ~A1!

Here o→01, al5(1/2m)(sql
222ql•p), b5(1/2m)(sq2

22q•p), and cl5(1/2m)(sql
22sq

l̄

2
22q•p) with l̄51 if

l52 and l̄52 if l51. Again q11q25q. The sum over
s561 is just a means of abbreviating the expression.

Because only the real evenX moments are of interest to
us we first separate the real part ofx0(1,2) by applying the
relation 1/(v6 io)→P/v7 ipd(v). We encounter integrals
of two different types:

I5ReE
2`

`

dv2E
2`

`

dv1

w~v1 ,v2!

v21 io1a
@~v11v21 io1b!21

2~v11v21 io1c!21#, ~A2!

J5ReE
2`

`

dv2E
2`

`

dv1

w~v1 ,v2!

v11 io1a
@~v11v21 io1b!21

2~v11v21 io1c!21#. ~A3!

The integralI can be calculated in a straightforward fash-
ion:

I5ReE
2`

` dv2

v21 io1aE2`

`

dv1w~v1 ,v2!

3@~v11v21 io1b!212~v11v21 io1c!21#

5PE
2`

` dv2

v21a
PE

2`

`

dv1F w~v1 ,v2!

v11v21b
2

w~v1 ,v2!

v11v21cG
2p2@w~a2b,2a!2w~a2c,2a!#. ~A4!

The p2 term in the last line provides the difference be-
tween I andJ. To see this observe that to be able to apply
1/(v6 io)→P/v7 ipd(v) in ~A3! we first have to use par-
tial fraction decomposition to eliminate the double pole. As a
result thep2 terms of the two contributions cancel out.

J5ReE
2`

`

dv2E
2`

`

dv1H w~v1 ,v2!

v21 io1b2a

3@~v11 io1a!212~v11v21 io1b!21#

2
w~v1 ,v2!

v21 io1c2a
@2~v11 io1a!21

1~v11v21 io1c!21#J
5PE

2`

`

dv2PE
2`

`

dv1

w~v1 ,v2!

v11a

3@~v11v21b!212~v11v21c!21#. ~A5!
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Interchanging the order of integration in the integrals~A2!
and ~A3! also changes the type of the integral. Therefore,
depending on the order of integration we do or do not en-
counter thep2 term.

It is important to realize that—although these are double-
principal-value integrals—the Poincare´-Bertrand theorem
does not apply here because withw(v1 ,v2)5v1

r1v2
r2 and

r 1 ,r 2.0 the integrands under consideration do not uncondi-
tionally satisfy the required convergence condition@17#. In
fact, for the X1,1, X0,2, X2,0, and theX1,3-moments of
x0(1,2) one finds that the double-principal-value integrals all
vanish and thep2 term alone contributes to the moment.
Using ~A2! and~A3! we can now calculate thedX’s directly
for the r 11r 252 cases:

E dv2

2p E dv1

2p
v1
r1v2

r2x08~a,b!

5E dv1

2p E dv2

2p
v1
r1v2

r2x08~a,b!1dXr1 ,r2
. ~A6!

Interestingly, the dXr1 ,r2
turn out to be identical for

(a,b)5(1,2), (0,1), and (0,2):

dX1,15
n

2

q1•q2
2m

q1
22q2

2

2m
, ~A7a!

dX2,05n
q0•q1
2m

q1•q2
2m

, ~A7b!

dX0,25n
q0•q2
2m

q1•q2
2m

. ~A7c!

APPENDIX B: FREQUENCY MOMENTS OF dS

Based on the definition ofD r1 ,r2
in Eq. ~48! it is straight-

forward to calculate the following moments:

D1,05
2

nb
$X1,21@0,2#1X21,1@0,2#1X21,1@0,1#

1X1,21@1,2#%

5
q0•q1
2m

Sq21
q1•q2
2m

Sq0, ~B1!

D0,152
2

nb
$X21,1@0,2#1X21,1@0,1#1X1,21@0,1#

1X21,1@1,2#%

52
q0•q2
2m

Sq12
q1•q2
2m

Sq0, ~B2!

D1,25
2

nb
$X1,1@0,2#1X21,3@0,2#1X1,1@1,2#2G%,

~B3!

D2,15
2

nb
$2X2,0@0,2#23X1,1@0,2#2X21,3@0,2#1X2,0@0,1#

12X1,1@0,1#1dX0,21G1X2,0@1,2#2X1,1@1,2#%.

~B4!

Here once more thedX term results from the change of the
order of integration. The term abbreviated withG occurs in
both theseD moments with opposite sign.

G:5E dv2

2p E dv1

2p

v2
3

v0
x8~01!. ~B5!

Even though we cannot calculate the momentsX21,3 and
X3,21, using the fact that X2,0@1,2#5X2,0@1,0#,
X2,0@0,1#5X2,0@0,2#, andX1,1@1,2#5X1,1@0,2# we can obtain
the sum ofD1,2 andD2,1:

D1,21D2,15
2

nb
$2X1,1@0,1#22X1,1@0,2#1X2,0@1,2#1dX0,2%

5b
q1•q2
bm

~q2
22q1

2!

bm
. ~B6!

This result allows one to cross check theM2,2moment as the
classical limit of eitherZ2,0 or Z̄0,2, Eqs.~52! and ~54!, re-
spectively. Furthermore it enables us to verify classical lim-
its, by matching the sum of the momentsM2,2 andM3,1 from
Eqs.~53! and ~54! with the direct classical result Eq.~C5!.

APPENDIX C: CALCULATION OF CLASSICAL
FREQUENCY MOMENTS

For calculating mixed frequency moments of
Sclassic(012) we use the Kubo procedure which is based on
the relation

Mr1 ,r2
5E

2`

` dv2

2p E
2`

` dv1

2p
v1
r1v2

r2Sclassic~012!

5~ i !r11r2
] r11r2Sclassic~012!

]t1
r1]t2

r2 U
t15t250

. ~C1!

Only the r 11r 25 even terms contribute. The case
r 15r 250 just gives the static quadratic structure function.
The r 15r 251 case was recovered in Eq.~49!. For r 152,
r 250 one finds

M2,05E
2`

` dv2

2p E
2`

` dv1

2p
v1

2Sclassic~012!

52
q1•q2
bm

Sq02
q0•q1
bm

Sq2. ~C2!
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In contrast tox, Sclassic(abc) is symmetric in all three ar-
guments. Therefore,v0

r0v1
r1 or v0

r0v2
r2 moments can be ob-

tained by the rotation of the arguments. Furthermore, since
v0
25v1

212v1v21v2
2 andv0v152v1

22v1v2 all the sec-
ond order moments ofSclassicare connected and can be eas-
ily related to each other@cf. Eqs. ~55! and ~56!#. For all
r 11r 252 cases the classical quadratic dynamic structure
functions sum up to linear static structure functions.

For the fourth order moments ofSclassic(012) the results
are considerably more involved. The simplest is the
r 15r 252 moment, given by:

M2,25E
2`

` dv2

2p E
2`

` dv1

2p
v1

2v2
2Sclassic~012!

5S i ]

]t1
D 2S i ]

]t2
D 2 1N ^%q0

~ t0!%q1
~ t1!%q2

~ t2!&
~0!U

t15t250

5
1

N
^%q0

~0!%̈q1
~0!%̈q2

~0!&~0!. ~C3!

For the 3-1 and 4-0 moments the higher time derivatives can
be avoided by shifting the time argument under the equilib-
rium average before taking a particular derivative. For in-
stance, ther 153, r 251 classical moment can then be writ-
ten as:

M3,15S i ]

]t1
D 1N^%q0

~2t1!%̈q1
~0!%̇q2

~ t22t1!&
~0!u t15t250

52
1

N
@^%̇q0

~0!%̈q1
~0!%̇q2

~0!&~0!

1^%q0
~0!%̈q1

~0!%̈q2
~0!&~0!#. ~C4!

In addition to^%%̈%̈& (0) a term^%̇%̈%̇& (0) comes up. For the
other fourth order moments we also have index permutations

of these two, such aŝ%̈%%̈& (0).
The two correlations can be calculated by using Hamil-

ton’s equations to replace the time derivatives and then inte-

grating by part. We find that̂ %̇%̈%̇& (0) leads to a quite
simple expression:

M3,11M2,252
1

N
^%̇q0

~0!%̈q1
~0!%̇q2

~0!&~0!

52
1

N(
i , j ,l

E dGe2bH~q0•xi !

3@~q1• ẋj !
21 i ~q1• ẍj !#~q2• ẋl !

3e2 i ~q0•xi1q1•xj1q2•xl !

522
q0•q1
bm

q1•q2
bm

2
q0•q2
bm

q1
2

bm
. ~C5!

Bearing in mind that through the continuity equation%̇ is
related to the particle velocity and that the velocities of two
classical particles are not correlated, it is indeed expected
that Eq.~C5! be correlation independent. On the other hand,

%̈ is linked to the equation of motion and thus contains a
force term. InM2,2 the Coulomb interaction between par-
ticles gives rise to force-kinetic energy and force-force cor-

relation in ^%%̈%̈& (0).

M2,25
1

N(
i , j ,l

E dGe2bHe2 i ~q0•xi1q1•xj1q2•xl !

3$~q1• ẋj !
2~q2•xl !

22~q1• ẍj !~q2• ẍl !

1 i ~q1• ẋj !
2~q2• ẍl !1 i ~q2• ẋl !

2~q1• ẍj !%

5
1

b2m2 H q12q2212~q1•q2!
21ngq0@~q1•q2!

3~q1•q222q1
222q2

2!22q1
2q2

2#12n

3~q1•q2!@gq1q1
21gq2q2

2#22n2hq1 ,q2q1
2q2

2

1
b

V(
p

~q1•p!~q2•p!fp@Sq11p,q22p2Sq11q22p,p#J .
~C6!

Herefp54pe2/p2 andgqi andhq1 ,q2 are the Fourier trans-
forms of the pair and triplet correlation functions. The last
term in ~C6! is the analog of the third frequency moment
coefficient for the linear dynamical structure function,
(b/V)(p(q–p)

2fp$Sq2p2Sp%: similarly to this coefficient
the two contributions can be interpreted in terms of the
forces acting on a particle oscillating in a local potential well
generated by the environment of other particles@18#. M3,1
can be obtained from Eqs.~C5! and ~C6!.
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